Marc Bezem

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

We discuss the foundations of the programming language PROLOG in logic
programming and demonstrate its use by examples. We explain unification

(with and without occur check), SLD-resolution, depth-first search procedure,
cut and negation as failure.

1. INTRODUCTION

Logic programming, in the broad sense of the term, is a
which 1s based on mathematical logic. Th uction
and computation are strongly interrelated. Already in the seventeenth century
Leibniz formulated hi

s 1deal of reducing all deduction to computauon (by
‘calculus ratiocinator’). Leibniz’ 1deal

was ela borated by
until, by the work of Gddel, Churc h and

became apparent. In general, it is p0551ble to demde on the truth of a pmpo-
sition by a finite cor

nputation. The converse of Leibniz’ ideal turned out to be
less problematic. After suﬁable codification, every computation may be viewed
as a deduction (in any reasonably stron g ded ucﬂve system). We refer the
interested reader to [5] for an overview of ded and computation.

lewing Ccom pumtion as deduction ir L first-order logic (thus
exciud' g other types of mathematical logic, such as higher-order logic, type
theory etc.). The idea of us ing (a subset pre dicate logic as a programmirn

language 1s form Kowalski in [6]. A programmi: language based on

OG has the foﬂow pm minent featm‘es sumple, concise syn-
Eax based on first-order logic; backtracking as a built-in control mechanism;
unification as a powerful computation primitive. Being particularly suited
symbolic pmcess ng, applications of PROLOG can be found in the following
fields: deductive d m proving, computer algebra,
natural langu guage pmcess g and compiler consi cuon

15

[he goal of this paper is to provide a short introduction to logic program-
ming and PROLOG, paying special attention to the relation between the two.
There are four sections, including the introduction. Section 2 contains some
ary preliminaries, such as the syntax and the semantics of first-order
logic, the syntax of logic programming, as well as the notion of unification.
Section 3 deals with logic programming; we explain the execution of logic pro-
grams, SLD-resolution and SLD-trees. In Section 4 we discuss the foundations
of PROLOG in logic programming and demonstrate its use 7]
Good introductory texts on logic programming are [1] and [7]. For PRO
we recommend [3] and [9]. Our exposition of logic programming 1

mainly on [1}].

MINARY DEFINITIONS AND NOTATION; UNIFICATION

2.1. Syntax of first-order logic
'he syntax of logic programming languages such as PROLOG 1s based on
first-order logic (not to be confused with the propositional logic from the arti-
cle of van Emde Boas). The alphabet of first-order logic consists of constants
a,b,c, variables x,y,z, function symbols f,g,A, predicate symbols p,q,r, proposi-
tional connectives (— for negation, V for disjunction, A for conjunction, — for
implication), and quantifiers (umuversal quantifier V, existential
quantifier 3).

The set of terms contains all variables and constants, and 1s closed under

function apphcation. For example f (g(a),x) 1s a term. We use s,7 as syntacti-
cal vanables for terms.

Atoms, or atomic formulas, are obtained by applying predicates to terms, for

example p(f (g(a),x),p,h(x)) 1s an atom. We use 4,B as syntactical variables
for atoms.

Formulas are constructed from atomic formulas with the help of proposi-
tional connectives and quantifiers.

To all denotations we add primes and subscripts when necessary.

2.2. Semantics of first-order logic

Throughout this paper we use £ to denote the Tarskian deduction relation.
More precisely, by P ¢ F we express that a formula F is a (logical) consequence
of a set of formulas P in the sense of the Tarski semantics of first-order logic
(see any textbook on mathematical logic, such as [4]). Two formulas are called
(logically) equivalent if they are consequences of each other.

2.3. Syntax of logic programming
A literal 1s an atom or the negation of an atom (so-called positive and negative

literals). A clause 1s the universal closure of a finite disjunction of literals. Thus
the general form of a clause is

Vxl, . v ,XI(LIV ST VLk)o

where x;,...,x (/=0) are all the variables occurring in the literals

16

mpty dause sfwm - s f OE‘ falsum, a
remuon of [according to Ehe

f alse proposnlon 1S 1S the natural in

where A4, ..
negauve L S Ef We

m OSE one posnwe literal.
guish between program clauses (or definite clauses), Wthh contain exactly one
positive literal, and goal clauses, which consist entirely of negative literals.
[hus the empty clause 1s a goal clause. Program clauses consisting of exactly
one positive literal are also called unit clauses. We use G as a syntactical vari-

able for goal clauses, often simply called goals. A logic program is a finite set
of program clauses.

We sum up the notational conventions concerning logic programming in
Table 1. From now on the universal (respectively existential) closure of a for-
mula F will be denoted by V(F) (respectively 3(F)).

I
| program clause
unit (program) clause
goal clause

empty (goal) clause

Horn clause Intended meaning
A<B,,...,B,(n=1) V({(B;A---AB)—-->A)
A« V(A)

<Ay, ..., A4y ((m=1) V(AN - ANAy))
[] falsum

TABLE 1

2.4. Unification

An important notion we shall need 1n the sequel 1s that of substitution. A sub-
stitution 1s a finite set of pairs of vanables and terms, denoted by
{x1/t1, ..., x /1 }, where all x;’s are distinct and each ¢; 1s different from x;.
The term ¢; 1s called a binding for x;. For example {x/ f (a),y/g(x,b),z/y} 1s a
substitution. We use 6, ¢ as syntactical vanables for substitutions.

The application of a substitution o to a syntactical expression E (a term, an
atom, or a list of atoms), denoted by E o, 1s the result of simultaneous replace-
ment of the occurrences of variables in £ by their bindings according to o. For
example, if o is the substitution above and E i1s p(x’,f (x),z), then Eo 1s

pxLf(f(a)y).

It is not difficult (see for example [1,§2.3]) to define the composition of two
substitutions ¢ and 6, denoted by o6, in such a way that (£ 0)@ 1s 1dentical to
E (a0), for all expressions E. One can prove that composition of substitutions 1s
associative, and so brackets in expressions like £ 6, - - - #, are immatenal.

17

A unifier of two atoms 4 and A’ is a substitution & such that 4 6 1s syntacti-
cally identical to A’8. For example {x/y}, {y/x}, {x/z,y/z} and

(x/f(a),y/f(a)} are unifiers of p(x) and p(y). The atoms p(x) and p (f (x))
do not have a unifier, they are not unifiable.

A substitution 6, is called more general than 6, if there exists #; such that
§, =6,6;. For example, the first three unifiers above are more general than the
fourth. A unifier of two atoms is called a most general unifier (mgu for short),
if it is more general than any other unifier. The first three unifiers above are
mgu’s of the atoms involved, the fourth is not. Another example: an mgu of
p(f(x,y),g(h(x)) and p(z,g(h(a))) is {x/a, z/ f(a,y))}. Note that the subst-
tution of terms for variables in an atom is a specialization, which may involve
a loss of information. The idea behind an mgu is that the umnification is
achieved while preserving as much generality as possible. We conclude this sec-

tion with the following important theorem.

UNIFICATION THEOREM (ROBINSON [8]). There exists an algorithm which pro-
duces a most general unifier of two given atoms if they are unifiable, and other-
wise reports that they are not unifiable.

3. EXECUTION OF LOGIC PROGRAMS

3.1. Basic idea

Let P be a logic program and G the goal «A4,,...,4,. The execution of P
with respect to G aims at refuting G from P, ie. showing that -G 1s
a consequence of P. We recall that the intended meaming of G 1s
V(—~(AA -+ - NA,)), so -G means F(A,N --- ANA,). However, it can be
proved that in general

Ped(A\N--- N4,

1s undecidable. This hard fact of life leaves us with the following three possibil-
ItIeS: an answer ‘yes’, an answer ‘no’, or no answer at all (infinite computa-

tion). Successful refutation of G from P moreover yields a substitution é such
that

PEV(A A - - AA,)).

Such an answer substitution 6 1s very informative: it provides a set of witnesses
for the existential theorem (4, A - - - AA4,).

EXAMPLE. Consider the logic program consisting of program clauses g(a)<,

p(g(a)) and p(f (x))<q(a), and the goal «p(y). Examples of answer sub-
stitutions are {y/ f (x)} (yielding a set of witnesses for 3y (p(y)), namely the set

of terms of the form f(¢)) and {y/g(a)} (yielding the witness g(a)). For the
goal «p(y),q(y) no answer substitution exists.

18

3.2. SLD-resolution

«—Ay,...,A,. The refutation procedure called SLD

-resolution (Selective
Linear resolution for Definite clauses) goes as follows. Select an atom, say A4,,

GO — @Al,...,Ai,.,.,An.

Choose a dause A «B,,...,B, (m=0) from

a1c

. 9A'“laBla « v ey)Ai“{"l? .-

[his procedure terminates when either G, =0, or no
apples to the selected atom of G;. The latter case is called Jailure, the former
success, or successful refutation, since the intended meaning of [J 1s falsum.

We now show that a successful refutation yields an answer substitution.
Assume conditions are as in the previous paragraph. For any goal G, let the
conjunction of the atoms from G be denoted by ~G. For example ~Gy

denotes AN - - - NA,, and ~0[] denotes the empty conjunction, or verum, a
true proposition. We obviously have

Pe((ByN---ANAB,)—>A;)8,,
since A0y 1s syntactically identical to A6y. Hence
Pe(AN - NA; _{AByA - AB,NA; -1 N\ - - - NAR)0y—
(AN - NA; A NANA; N - - - NAR)E,
or, 1n other words,
PE~Gy—>~Ggb,.
More generally, we have for all 0<<i <k
PE~G; i 1—>~G;0..

So if G, =0 for some k, then it follows by successive application of this argu-
ment for i =0, ...,k —1 that

Pe~O->~Goby --- 0 _1.

.....

Hence for §=40, - - - 6, —, we finally obtain, as ~[J is a true proposition,
PEeEV((AN --- NA,)D),

soO @ 1s the desired answer substitution.

19

Cor

REMARK. Sometimes variables in a program clause have to be renam ed. _

cample, the logic program consisting of just p(f (x))« sho'uld succes sfully
refute the goal «—p (x }, al thOllgh)4 (f (_x)) and p (_x) are not umﬁable: ENnams-
ing will be done in a systematic way by (implicitly) adding as 'subscnpts to _the
variables of the program clause the number of steps taken in the refutation
procedure. Note that this does not change the meaning of the clauses, because
of the universal closure. In the example above the answer substitution

becomes {x/f (x;)]}.

3.3. SLD-tree
I he reader will have observed two elements of non-determinism in the refuta-
tion procedure described above. The first is the selection of an atom from the
goal, and the second is the choice of the program clause. As to the selection
of atoms from goals, one can state and prove independency results with
respect to successes and answer substitutions of SLD-resolution. Since this
would lead us too far, we refer the reader to [1] or [7]. Given this indepen-
dency we can safely fix a so-called selection rule, which defines for every goal
which atom is selected. Once a selection rule has been fixed we can view the
refutation procedure described in the previous subsection as pursueing a path
In a tree, called SLD-tree. The nodes of this tree are goals, the branches
represent different choices of program clauses. The root of an SLD-tree is the
goal with which the refutation procedure starts, and a leaf represents either a
success (the empty clause), or a failure (no program clause applicable to the
selected atom of the goal). An SLD-tree should be considered as a search
space. Note that SLD-trees are finitely branching trees (since programs are
finite), which possibly contain infinite paths (consider the logic program
{p <p} and the goal «p).

We conclude this section with two examples of SLD-trees, taken from [2].
Consider the logic program consisting of the following three program clauses.

L. path(x,z)earc(x,y),path(y,z)
2. path (x,x)«
3. arc(b,c)«

[he first two clauses express that path is the transitive and reflexive closure of
arc. The third clause defines the relation arc. We consider two SLD-trees with
the goal <—parh(x,c) as root, but with different selection rules. In Figure 1 the
leftmost atom of each goal is selected, and in Figure 2 the rightmost. The
branches are labeled by the mgu and by the number of the program clause
used. For ease in reading the selected atoms are bold-faced and the bindings
for vanables (if any) of the goal precede those (if any) of the program clause in
the denotations of the mgu’s. Note that both SLD-trees yield the answer sub-
stitutions {x/b, ...} and {x/c, . . .}

20

{x1/x,21/c} {x/c, x/c}

{x3/¢c,z3/c} {x3/c}

<-——arc(c,y 3),path (y 3,C) L]

FIGURE 1

4 I. PROLOG versus logic programming
amming language PROLOG 1is in the first instance based on loglc
progr amming. However, there are a number of important differences. Most
differences are motivated by practical arguments such as efficiency, ease of
plementatlon and ease of use, and are deeply regretted by the theoretical
. We shall mention some of these differences in the next para-
graphs together W1th short comments.
ROLOG uses a selection rule which selects of each goal the leftmost atom.
~ As long as the independency results mentioned in the first paragraph of sub-
section 3.3 are valid, there is no problem. However, if one enriches logic pro-
ing with negation, then the leftmost selection rule causes problems.

These problems are beyond the scope of this tutorial (see [1]).
PROLOG searches depth-first from left to right in the SLD-tree, where the
direction from left to right corresponds to the textual order of the program
clauses. It thus misses successes which are on the right of an infinite path.
Moreover the textual order of the program clauses becomes crucial. On the
other hand: from a programming pont of view, without an emphasis on logic,
the PROLOG way of searching i SLD-trees constitutes a flow of control,

often called backtracking, which is very powerful (see the last example n Sub-
section 4.2).

21

{xl/x,zl/c} {)C/C,x]/C}

«—arc(x,y),path

{Xz/y], 22/0}
1

«—arc(x,yy),arc(y,y2).path(y,,c) «are(x,c)

{y2/¢, x3/c) 3| (x/b)

—arc(x,y),arc(y,c) [

Cinfinite". MG
- subtree -
«—arc(x,b)
failure
FIGURE 2

PROLOG uses a unification algorithm without a so-called occur-check : it
unifies x with f(x), whereas this unification is impossible since x occurs in
f (x). As a consequence the goal «g¢ is successfully refuted by PROLOG from
the logic program P consisting of g<p(x,x) and p(x,f (x))«<, whereas obvi-
ously we do not have P & g.

PROLOG’s syntax often dewviates from that of logic programn For all
but the representation of lists in PROLOG we shall ignore these deviations
and stay as close as possible to the syntax of logic programming. For the
representation of the empty list we introduce a special constant []. For the
construction of non-empty lists we introduce a special binary function, similar
to CONS 1n LISP. If L is a list and ¢ a term, then the application of this spe-
cial binary function to ¢ and L, denoted by [z | L], represents the list with ¢ as
first element (the head), followed by the list L (the rail). Moreover
[z1, .. .,t,| L] abbreviates the list [#y |[---[¢,|L]- - -]], provided that L is a
hist. Finally (¢4, . . . ,1,] abbreviates [z}, . . . ,z,|[]] (n=1).

22

Consider the (classical) logic p
clauses.

1. append ([],z,z)<

2. append ([w | x 1.y, [w |z])<—--append (x,y,2)

If we mnterp with the list y appended at the end
equals the list z’, then the two clauses state exactly what 1s necessary ai

sufficient concerning append. Figure 3 shows the SLD-tree for the goal
«append([a,bl,[c,d],z), which 1s successfu ly refuted yielding the answer sub-
stitution {z/[a |[b |[c,d]]], . . .}. The branches of the SLD-tree are by
the number of the program clause used, and by the most relevant bindin
the mgu’s.

2 {z/[a|zl],...}

<«—appen I L {C, d], Z 1)

2 {z1/[b|z3), ...)

[c,d],z3)

1{{z2/[cd], ...}

[]

FIGURE 3

23

If we change the textual order of the program clauses above, then the goal
«append (|a,b),[c,d],z) Aill still be successfully refuted by PROLO G, y1 eld g
the same answer substitution. The reason is of course that in every step of the
refutation procedure only one program clause applies, so that the SLD-tree
consists of one single path. However, the goal «append(x,y,z) wili (wrongly)
not be refuted, although answer substitutions exist. For
{x/[a,b},y/[c,d),z/[a,b,c,d]} is an answer substitution for th
—append(x,y,z), but also {x/[],y/z)}. The reason is that the leftmost path n
the SLD-tree is infinite, so that PROLOG misses all answer substitutions, since
they are all on the right of this infinite path.]

gram clause 2 now precedes 1).

infinite leftmost path [

FIGURE 4

The way of appending hsts such as described in the previous paragraphs i1s
considered naive, since it 1s not efficient. It 1s not difficult to see that the time
1t takes to append hsts this way 1s linear in the length of the first list. With a
more clever representation of lists 1t 1s possible to append lists in constant time.
[his representation 1s called difference list, and amounts to representing a list
[¢1, ..., t,] (n=1) by the term {#,, . .. ,7,|x]—x (— is a new binary function
symbol written as infix). The empty list 1s represented by x —x. Here the key
1dea 1s that the end of the list 1s immediately accessible by means of the van-
able x. Thus the (linear) walk through a list (such as done by append) is
avoided. Concatenation of hists can now be achieved elegantly and efficiently

24

program consisting of just one clause.

concat(x —y,y —2z, X —Z)«

Figure 5 shows the concatenation of [a,b] and [¢,d], thus illustrating the power
of unification (the essential binding is z/[a,b,c,d |y]—).

Our next example illustrates the power of backtracking in PROLOG. To this
purpose we consider a classical problem: the problem of colouring a map with
four different colours 1n such a way that no two countries with a borderline in
common share the same colour. The colours are denoted by the constants red,
white, blue and orange. To exclude any pretence of chauvinism, consider that
part of Europe which 1s centered around Belgium, 1.e. the well-known countries
denoted by the capitals B, NL, D, L and F. A colouring of these countries is
defined by binding the vanables xp, xyr, xp, x;, xp to the colours above.
Taking the map of Europe into account, the correct solutions to the colouring
problem are given by the following program clause.

1. solution (xy; ,Xpg, X1 ,XF,Xp)<differentlycoloured (xn; ,xp),
differentlycoloured (xg,xp),
differentlycoloured (xp,x;),
differentlycoloured(x; ,xp),
differentlycoloured (xy; ,Xxp),
differentlycoloured (xp,xr),
differentlycoloured (xr,xp),
differentlycoloured(x ,xr)

Of course the program is not yet complete, since we haven’t given a proper
definition of differentlycoloured. This will be done in the next program clause.

2. differentlycoloured(x,y)«—colour (x),
colour (y),
notequal (x,y)

25

26

The next four program clauses state what the colours are.
3. colour (red)«

4. colour (white)«

S. colour (blue)«

6. colour (orange)«

Finally we define in twelve (!) program clauses which colours are different.
Note that in the absence of negation we do not have any other way of defining
notequal. We shall remedy this obvious shortcoming in the next subsection.

1. notequal (red,white)«
8. notequal (red, blue)«

9. notequal (red,orange)«

18. notequal (orange, blue)<«

The reader easily verifies that the successful refutation of the goal
«solution(xyp,xp,x;,Xr,Xxp) from the logic program above yields an answer
substitution which represents a correct colouring of the countries involved.
The backtracking search procedure which would have to be programmed out
In most other programming languages coincides with the way in which PRO-
LOG searches for a successful refutation in the SLD-tree.

4.3. Negation as failure

T'he last example shows an urgent need for (at least some kind of) negation. In
the present subsection we shall introduce a type of negation called

negation as failure. First note that equality of colours in the example above
could very well be defined by the following program clause.

equal (x,x)«

It so happens that two colours ¢ and ¢’ are different if and only if the goal
«equal(c,c’) fails with respect to the above program clause. Negation as
tailure 1s the general rule according to which a negated atom 4 without vari-
ables 1s inferred from a program P if and only if the goal «A fails with
respect to P. (We recall that the refutation procedure can lead to success, to
fatlure, or to infinite computation. A goal is said to fail if the PROLOG search
in the SLD-tree terminates in a finite number of steps without success.) In
most PROLOG systems negation as failure is built-in and negated atoms (even
with variables) are allowed at the right hand sides of « in program and goal
clauses. This practice cannot be completely justified; for a discussion on the
use of negation in logic programming we refer the reader to [1]. For the
remaining part of this tutorial we restrict ourselves to demonstrating how,

26

based on the 1dea 0f negation as failure, a con ven lent definition Of notequal
n be implemented by means of a control p:

egatlvely) can eas be

pIO gI alll.,

l. p<tig
2. per

Assume moreover that, in some SLD-tree, the goals «p and «p’ are just
below a certain goal G, with «p left from <—-p Application of program clause
I to «p yields the goal «g, while passing a cut, a fact which we mdlcate by
attaching the label ‘I’ to the corresponding branch of the SLD-tree. Of course
the application of program clause 2 yields the goal «r. Finally assume that the
subtrees below «¢, «r and «p’ are, respecuvely, T,, T, and 7,,. Th

tion 1s now as depicted in Figure 6.

G

FIGURE 6

27

T'he eilect of the cut is that, if the search procedure has exh - Tq without
success, then T, is pruned and the search for success 1s continued in 7. |
analog oetween the cut and a forwar d GOTO mm mm per ative pPro gramimni

Now for the (cumbersome) general case. A cut is said to be introduced when
it first appears (not necessarily on the first atom position) in a goal. A cut is
passed when it app m position of a goal; the cut 1s then
immed ately deleted from the £0a . AN ple above the cut | 1S 1ntroduced
and passed in the same goal. In general, the effect of a cut 1s that, when
PROLOG’s search procedure backtracks from the goal where the cut was
passed, the goal just above the goal in which the cut was introduced is taken to
faill. Thus possible solutions in the pruned part of the SLD-tree are ignored. (If
the cut 1s introduced in the root of the SLD-tree, then this root is taken to
fail.)

'he implementation of notequal by means of the cut is a logic program con-
sisting of the following three program clauses.

l. equal (x,x)«

2. notequal (x,y)—equal (x,y),
v

Jail
3. notequal (x,y)«

The atom fail is a predicate to which no program clause applies, so that it
necessarily fails.
Consider the goal «notequal(red,white) (see Figure 7, omitting mgu’s from

now on). This goal succeeds due to the third program clause; the search pro-
cedure never passes the cut.

<notequal(red, white)

i(red,white),\, fail [
failure

FIGURE 7

- Consider the goal «notequal(red,red). The SLD-tree of this goal 1s depicted
in Figure 8. The first program clause (a unit clause), applies to the atom

28

—equal(red,red),!, fail []
pruned success

1!

failure

FIGURI

REFERENCES

1.

K.R. Art (1988). Introduction to Logic Programming, Report CS-R8326,
Centre for Mathematics and Computer Science, Amsterdam. To appear
in: J. vAN LEEUWEN (editor). Handbook of Theoretical Computer Science,
North-Holland, A

\msterdam.
K.R. Apr and M.H. vaN EMDEN (1982). Contributions to the theory of
logic programming. J. ACM 29, 841-862.
I. BraTkO (1986). PROLOG Programming for Artificial Intelligence,
Addison-Wesley, Reading (Mass.).
H.B. ENDERTON (1972). A Mathematical Introduction to Logic, Academic
Press, New York.
G. Huet (1985). Deduction and computation. In: W. BIBEL and PH. JOR-
RAND (editors). Fundamentals of Artificial Intelligence, Lecture Notes 1n
Computer Science 232, Springer-Verlag, Berhin, 39-74.
R.A. KowaLsk1 (1974). Predicate logic as a programming language. In:
J.L. RosENFELD (editor). Information Processing 74, Stockholm, North-
Holland, Amsterdam, 569-574.
JW. Lroyp (1987). Foundations of Logic Programming, Second Edition,
Springer-Verlag, Berhn.
J.A. ROBINSON (1965). A machu
principle. J. ACM 12, 23-41.
L. STERLING and E.Y. SHAPIRO (1936).
Press, Cambridge (Mass.).

e-oriented logic based on the resolution

(he Art of Prolog, The MIT

29

